International Journal of Cancer Management

Published by: Kowsar

Association of Toll-like Receptors and High-mobility Group Proteins with MicroRNAs in Melanoma

Siamak Sandoghchian Shotorbani 1 , 2 , Behzad Baradarn 1 , 2 , Hamideh Herizchi Ghadim 3 , Zohreh Babaloo 1 , 2 , Leila Sadat-Hatamnezhad 3 , Armaghan Ghareaghaji-Zare 3 , Babak Sandoghchian Shotorbani 4 and Hamideh Azimi 3 , *
Authors Information
1 Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran
2 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
3 Department of Dermatology, Sina Hospital, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran
4 Department of Oncology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
Article information
  • International Journal of Cancer Management: December 2017, 10 (12); e11935
  • Published Online: December 31, 2017
  • Article Type: Review Article
  • Received: May 16, 2017
  • Revised: October 24, 2017
  • Accepted: December 19, 2017
  • DOI: 10.5812/ijcm.11935

To Cite: Sandoghchian Shotorbani S, Baradarn B, Herizchi Ghadim H, Babaloo Z, Sadat-Hatamnezhad L, et al. Association of Toll-like Receptors and High-mobility Group Proteins with MicroRNAs in Melanoma, Int J Cancer Manag. 2017 ;10(12):e11935. doi: 10.5812/ijcm.11935.

Copyright: Copyright © 2017, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
  • 1. Grasso P. Essentials of pathology for toxicologists. CRC Press; 2003.
  • 2. Janeway CJ, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197-216. doi: 10.1146/annurev.immunol.20.083001.084359. [PubMed: 11861602].
  • 3. Beutler B. Innate immunity: an overview. Mol Immunol. 2004;40(12):845-59. [PubMed: 14698223].
  • 4. Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol. 2002;14(1):103-10. [PubMed: 11790539].
  • 5. Finberg RW, Wang JP, Kurt-Jones EA. Toll like receptors and viruses. Rev Med Virol. 2007;17(1):35-43. doi: 10.1002/rmv.525. [PubMed: 17146842].
  • 6. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376-85. doi: 10.1038/nrm1644. [PubMed: 15852042].
  • 7. Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31(1):37-49. doi: 10.1093/carcin/bgp272. [PubMed: 19955394].
  • 8. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121(11):2373-80. doi: 10.1002/ijc.23173. [PubMed: 17893866].
  • 9. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590-610. doi: 10.1016/j.molonc.2012.09.006. [PubMed: 23102669].
  • 10. Wang X, Yang P, Liu R, Niu Z, Suo Y, He H, et al. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry. International Society for Optics and Photonics; 2016.
  • 11. Paul SP. Dermocracy: For Brown Skin, by Brown Skin, The Definitive Asian SkincareGuide. Harper Collins; 2014.
  • 12. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143-59. doi: 10.1002/emmm.201100209. [PubMed: 22351564].
  • 13. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. doi: 10.1038/sigtrans.2015.4. [PubMed: 29263891].
  • 14. Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, Muti P, et al. Tumor suppressor microRNAs: a novel non-coding alliance against cancer. FEBS Lett. 2014;588(16):2639-52. doi: 10.1016/j.febslet.2014.03.033. [PubMed: 24681102].
  • 15. Sadat-Hatamnezhad L, Tanomand A, Mahmoudi J, Shotorbani SS. Activation of Toll-Like Receptors 2 by High-Mobility Group Box 1 in Monocytes from Patients with Ischemic Stroke. Iranian Biomed J. 2016;20(4):223.
  • 16. Moresco EM, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011;21(13):R488-93. doi: 10.1016/j.cub.2011.05.039. [PubMed: 21741580].
  • 17. Shotorbani SS, Su ZL, Xu HX. Toll-like receptors are potential therapeutic targets in rheumatoid arthritis. World J Biol Chem. 2011;2(7):167-72. doi: 10.4331/wjbc.v2.i7.167. [PubMed: 21912729].
  • 18. Kim J. The role of protein methylation as a modifier of cellular pathways. 2006.
  • 19. Hamerman JA, Pottle J, Ni M, He Y, Zhang ZY, Buckner JH. Negative regulation of TLR signaling in myeloid cells--implications for autoimmune diseases. Immunol Rev. 2016;269(1):212-27. doi: 10.1111/imr.12381. [PubMed: 26683155].
  • 20. Tartey S, Takeuchi O. Toll‐Like Receptors: Role in Inflammation and Cancer. Cancer and Inflammation Mechanisms: Chemical, Biological, and Clinical Aspects. 2014.
  • 21. O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol. 2011;11(3):163-75. doi: 10.1038/nri2957. [PubMed: 21331081].
  • 22. Baltimore D, Boldin M, Taganov K. Modulation of innate immunity receptors' signaling by microRNAs miR-146a and miR-146b. Google Patents; 2014.
  • 23. Vigorito E, Kohlhaas S, Lu D, Leyland R. miR-155: an ancient regulator of the immune system. Immunol Rev. 2013;253(1):146-57. doi: 10.1111/imr.12057. [PubMed: 23550644].
  • 24. Liu G, Abraham E. MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol. 2013;33(2):170-7. doi: 10.1161/ATVBAHA.112.300068. [PubMed: 23325473].
  • 25. Teng GG, Wang WH, Dai Y, Wang SJ, Chu YX, Li J. Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS One. 2013;8(2). e56709. doi: 10.1371/journal.pone.0056709. [PubMed: 23437218].
  • 26. Pilzweger C, Holdenrieder S. Circulating HMGB1 and RAGE as Clinical Biomarkers in Malignant and Autoimmune Diseases. Diagnostics (Basel). 2015;5(2):219-53. doi: 10.3390/diagnostics5020219. [PubMed: 26854151].
  • 27. Zhu H, Huang L, Zhu S, Li X, Li Z, Yu C, et al. Regulation of autophagy by systemic admission of microRNA-141 to target HMGB1 in l-arginine-induced acute pancreatitis in vivo. Pancreatology. 2016;16(3):337-46. doi: 10.1016/j.pan.2016.03.004. [PubMed: 27017485].
  • 28. Postnikov YV, Bustin M. Functional interplay between histone H1 and HMG proteins in chromatin. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2016.
  • 29. Reeves R. High mobility group (HMG) proteins: Modulators of chromatin structure and DNA repair in mammalian cells. DNA Repair (Amst). 2015;36:122-36. doi: 10.1016/j.dnarep.2015.09.015. [PubMed: 26411874].
  • 30. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406(6797):782-7. doi: 10.1038/35021228. [PubMed: 10963608].
  • 31. Maugeri M. Analysis of the involvement of exosomal miRNAs and proteins in the response of CRC cells to Cetuximab. 2014.
  • 32. Kumar L, Haque R, Nazir A.Shamsuzzama. Role of MicroRNA Let-7 in Modulating Multifactorial Aspect of Neurodegenerative Diseases: an Overview. Mol Neurobiol. 2016;53(5):2787-93. doi: 10.1007/s12035-015-9145-y. [PubMed: 25823513].
  • 33. Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015;81:128-41. doi: 10.1016/j.addr.2014.05.009. [PubMed: 24859533].
  • 34. Urrutia R, Velez G, Lin M, Lomberk G, Neira JL, Iovanna J. Evidence supporting the existence of a NUPR1-like family of helix-loop-helix chromatin proteins related to, yet distinct from, AT hook-containing HMG proteins. J Mol Model. 2014;20(8):2357. doi: 10.1007/s00894-014-2357-7. [PubMed: 25056123].
  • 35. Kumar MS, Armenteros-Monterroso E, East P, Chakravorty P, Matthews N, Winslow MM, et al. HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature. 2014;505(7482):212-7. doi: 10.1038/nature12785. [PubMed: 24305048].
  • 36. Wang X, Cao L, Wang Y, Wang X, Liu N, You Y. Regulation of let-7 and its target oncogenes (Review). Oncol Lett. 2012;3(5):955-60. doi: 10.3892/ol.2012.609. [PubMed: 22783372].
  • 37. Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, et al. Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene. 2013;32(45):5272-82. doi: 10.1038/onc.2012.573. [PubMed: 23318420].
  • 38. Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1-12. doi: 10.1016/j.gene.2012.12.009. [PubMed: 23246696].
  • 39. andTaro Kawai TK. Toll-like receptor signaling pathways [J]. Pattern Recognition Receptors and Cancer. 8916. 2015.
  • 40. Johnston NJ. miRNA regulation of programmed cell death-1 in T cells: potential prognostic and therapeutic markers in melanoma. The University of Western Ontario; 2014.
  • 41. Wu D, Cerutti C, Lopez-Ramirez MA, Pryce G, King-Robson J, Simpson JE, et al. Brain endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple targets to inhibit NF-kappaB activation. J Cereb Blood Flow Metab. 2015;35(3):412-23. doi: 10.1038/jcbfm.2014.207. [PubMed: 25515214].
  • 42. Meisgen F, Xu Landen N, Wang A, Rethi B, Bouez C, Zuccolo M, et al. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. J Invest Dermatol. 2014;134(7):1931-40. doi: 10.1038/jid.2014.89. [PubMed: 24670381].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader